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Abstract—On the basis of a mixed statement (velocity–strain), we complete the development of
a general theory of completely conservative adjoint-coordinated difference schemes for dynamic
problems of linear elasticity and viscoelasticity. In particular, our explicitly solvable discrete
models permit controlling the total energy imbalance and have the same parallelization degree
as the conventional explicit schemes.
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Let V be a connected domain where the Cartesian coordinates of a point M(x1, x2, x3) ∈ V vary,
and let the boundary γ = γ1∪γ2 of V be “sufficiently smooth.” If t is time, then G = [0 ≤ t ≤ t1]×V
is the phase volume. The parameters of the dynamic process in question are as follows: u(M, t) is
the displacement vector, v(M, t) = ∂u/∂t is the velocity, ε(M, t) is the strain tensor, and σ(M, t)
is the stress tensor. Mathematical models of dynamic problems of linear elasticity are usually based
on the momentum conservation law

�
∂2u

∂t2
+ R∗σ = �f ↔ �

∂v

∂t
+ R∗σ = �f, (1)

the constitutive “displacement–strain” relation

ε = Ru ↔ 2εij = ∂jui + ∂iuj, ∂i = ∂/∂xi, εij = εji, (2)

and the equation of state

σ = Kε ↔ σij = 2μεij + λδij(ε11 + ε22 + ε33) = σji. (3)

In (1)–(3), the vectors u = (u1, u2, u3)T and v = (v1, v2, v3)T are treated as elements of a Hilbert
space H, and the symmetric tensors

ε = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23)T, σ = (σ11, σ22, σ33, σ12, σ13, σ23)T

of rank 2 are treated as elements of the Hilbert space H∗. The inner products on H and H∗ are
defined as the convolution of the corresponding elements. The vector components ui and vi and
the tensor entries εij and σij are scalar functions of the vector argument (M, t) ∈ G. For given
scalar functions �(M) > 0, λ(M) > 0, μ(M) > 0, and f(M), system (1)–(3) is closed in the sense
that the number of independent relations (1)–(3) exactly coincides with the number of parameters
ui(M, t), vi(M, t), εij(M, t), and σij(M, t) to be determined.

System (1)–(3) should be supplemented with the initial conditions

u(M, 0) = ϕ1(M), v(M, 0) = ϕ2(M) (4)
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and boundary conditions, say,
u|γ1 = 0, σijnj|γ2 = 0, (5)

where the nj are the components of the unit outward normal on γ2. The particular boundary
conditions for (1)–(3) are always determined by the specific features of the problem in question.
The choice in (5) (the boundary γ1 is fixed, and the boundary γ2 is stress-free) has only been made
to simplify the subsequent exposition as much as possible. This also pertains to the definition of
the function f(M) in (1). For example, if γ1 = 0 in (5), then the balance conditions do not permit
one to specify the function f(M) arbitrarily.

By (2), the operator R : H → H∗ is defined as follows:

ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε11

ε22

ε33

2ε12

2ε13

2ε23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂1 0 0

0 ∂2 0

0 0 ∂3

∂2 ∂1 0

∂3 0 ∂1

0 ∂3 ∂2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

u1

u2

u3

⎞
⎟⎠ = Ru. (6)

By definition, for the self-adjoint operator R∗ : H∗ → H from (1), we have

(u,R∗σ)H = (Ru, σ)H∗ , u ∈ H, σ ∈ H∗. (7)

This, together with relations (5) and (6) and the integration by parts formula, implies that

R∗σ = −RTσ = −

⎛
⎜⎝

∂1 0 0 ∂2 ∂3 0

0 ∂2 0 ∂1 0 ∂3

0 0 ∂3 0 ∂1 ∂2

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ12

σ13

σ23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= − divσ, (8)

which, in the case of a Cartesian reference system, coincides with the definition of the divergence
of a tensor of rank 2. Finally, by (3),

K =

(
K1 0

0 K2

)
, K1 =

⎛
⎜⎝

λ + 2μ λ λ

λ λ + 2μ λ

λ λ λ + 2μ

⎞
⎟⎠ , K2 =

⎛
⎜⎝

μ 0 0

0 μ 0

0 0 μ

⎞
⎟⎠ . (9)

Therefore, if λ(M) > 0 and μ(M) > 0 in (3), then K = KT > 0.
Therefore, we arrive at the following closed operator mathematical model for dynamic problems

of linear elasticity:

�
∂v

∂t
+ R∗σ = �f, σ = Kε, ε = Ru,

∂u

∂t
= v,

u(M, 0) = ϕ1(M),
∂u

∂t
(M, 0) = v(M, 0) = ϕ2(M), (M, t) ∈ G.

(10)

The boundary conditions (5) are used in (10) to specify the domains of the operators R and R∗.
When carrying out a numerical experiment for the considered class of dynamic problems, one should
consider the model (10) as a component of the famous Samarskii triad: I model → II algorithm →
III computer software. Therefore, roughly speaking, the “performance” of a continuous [(M, t) ∈ G]
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model at stage I often determines the “performance” of the discrete [(Mh, nτ) ∈ Gh] model at the
same stage and hence the “performance” of the numerical experiment for the considered class of
problems. Let us explain this using the continuous model (10) as an example.

First, note that relation (10) does not a priori prescribe the order in which the unknown pa-
rameters u(M, t), v(M, t), ε(M, t), and σ(M, t) should be found. At the same time, as a basis of
numerical experiment for the considered class of dynamic problems, one uses continuous models
with prescribed order in which the unknown parameters should be found. For example, consider
the statement of dynamic problems in “stresses,”

σ = Kε ← ε → u → v = ∂u/∂t, (11)

or in “displacements,”
v = ∂u/∂t ← u → ε → σ = Kε. (12)

In (11), the parameter ε ∈ H∗ is determined first, and in (12), one first finds the parameter u ∈ H.
In connection with the passage ε → u in (11), consider the operator equation

Ru = ε. (13)

Lemma 1. The operator equation (3) is solvable if and only if

(ε, ψ)H∗ = 0, R∗ψ = 0. (14)

One can show that the Saint-Venant compatibility (solidity) condition, vanishing of the incom-
patibility tensor, and condition (14) are equivalent. If condition (14) is satisfied, then the element
u ∈ H in Eq. (13) is determined by the element ε ∈ H∗ modulo an element of the kernel of the
operator R,

u = R−1ε + û, Rû = 0. (15)

The element û (the rigid displacement vector) is usually fixed with the use of a boundary con-
dition on γ1, and then the passage ε → u can be performed with the use of the Cauchy–Cesaro
condition. Condition (14) determines the solvability subspace H∗

1 ⊂ H∗ of problem (13) in H∗.
Therefore, the statement (11) of the dynamic problem in “stresses” should be supplemented with
the condition ε ∈ H∗

1 .
Now consider the statement (11) in “displacements.” Here, for the initial determination of the

“displacements,” the momentum conservation law (1) is transformed as follows:

�
∂2u

∂t2
+ R∗σ = �f → �

∂2u

∂t2
+ R∗Kε = �f → �

∂2u

∂t2
+ R∗KRu = �f. (16)

But the last passage in (16) is related to the assumption that, to each ε ∈ H∗, there corresponds
an element u ∈ H such that ε = Ru. This means that ε ∈ H∗

1 in (16).

Lemma 2. If
∂ε

∂t
− Rv = 0, ε(M, 0) = Ru(M, 0) = Rϕ1(M), (17)

then the solvability condition (14) is satisfied for 0 ≤ t ≤ t1, which implies that ε(M, t) ∈ H∗
1 .

Lemma 3. Problem (17) and the problem

∂u

∂t
= v, u(M, 0) = ϕ1(M) (18)

are equivalent.
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This is sufficient to justify the following choice of a continuous mathematical model (stage I of
the triad I → II → III) for dynamic problems of linear elasticity:

�
∂v

∂t
+ R∗σ = �f,

∂ε

∂t
− Rv = 0,

∂u

∂t
= v, σ = Kε,

u(M, 0) = ϕ1(M), v(M, 0) = ϕ2(M), ε(M, 0) = Rϕ1(M).
(19)

In the model (19), the boundary conditions (5) are used [as well as in the model (10)] to specify
the domains of the operators R and R∗.

Theorem 1. The additional conservation law

∂I(t)
∂t

= (�f, v)H , I(t) = 0.5(�v, v)H + 0.5(ε, σ)H∗ , σ = Kε, (20)

holds for the continuous model (19).

Proof. The desired assertion is almost obvious. One should take the inner products of the first
relation in (19) by v and the second relation by σ and add the results.

The physical interpretation of the conservation law (20) is equally obvious. By integrating (20)
with respect to t and by using the relation v = ∂u/∂t, we obtain

I(t + Δt) = I(t) +

t+Δt∫

t

(
�f,

∂u

∂t

)

H

dt = I(t) + Q1(t + Δt). (21)

Consider relation (20) and note that the first term in I(t) corresponds to the kinetic energy of
the elastic medium and the second term to the potential elastic strain energy, both related to the
volume V . Finally, Q1 in relation (21) is the work of mass forces on the displacement increments
Δu in time Δt. Therefore, relation (20) or (21) can be treated as the conservation law for the total
energy of the elastic medium in the volume V .

The basic model (19) associated with the original definition of the covector (v, ε)T can also be
used as a basis of a numerical experiment for problems of dynamics of a linear viscoelastic medium.
Consider the Kelvin (Kelvin–Voigt) viscoelastic medium. Let

ε = (ε11, ε22, ε33, 0, 0, 0)T + (0, 0, 0, 2ε12 , 2ε13, 2ε23)T = (ε1, 0)T + (0, ε2)T = (ε1, ε2)T,

σ = (σ11, σ22, σ33, 0, 0, 0)T + (0, 0, 0, σ12 , σ13, σ23)T = (σ1, 0)T + (0, σ2)T = (σ1, σ2)T.

Such representations correspond to the expansion of the strain tensor and the stress tensor into
the spherical and deviatory parts. In view of the notation in (19), the state equation σ = Kε for
a linear elastic medium can be represented in the form

σ1 = K1ε1, σ2 = K2ε2. (22)

Unlike (22), the state equations for the Kelvin viscoelastic medium are defined as follows:

σ̂1 = K1ε̂ + η1

∂ε̂1

∂t
, σ̂2 = K2ε̂ + η2

∂ε̂2

∂t
, (23)

where scalar functions η1, η2 > 0 of a vector argument specify the bulk and shear viscosities of the
medium. For simplicity, in the following, we set η1 = η2 = η, and then

σ̂ = Kε̂ + η
∂ε̂

∂t
. (24)
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Thus, for problems of dynamics of a Kelvin viscoelastic medium, we obtain the closed operator
model

�
∂v̂

∂t
+ R∗σ̂ = �f,

∂ε̂

∂t
− Rv̂ = 0,

∂û

∂t
= v̂, σ̂ = Kε̂ + ηRv̂,

û(M, 0) = ϕ1(M), v̂(M, 0) = ϕ2(M), ε̂ (M, 0) = Rϕ1(M).
(25)

The boundary conditions for (25) are defined in (5), where σ should be replaced by σ̂ and u by û.
In (25), as well as in (19), the covector (v̂, ε̂ )T should be determined first.

Theorem 2. The additional conservation law

∂Î

∂t
+ (v̂, R∗ηRv̂ )H = (�f, v̂ )H (26)

holds for the continuous model (25). In (26), η should be treated as the matrix K in (9) with
entries kij = δijη. For Î(t), from (26), one obtains [cf. (20)]

Î(t) = 0.5(�v̂, v̂ )H + 0.5(Kε̂, ε̂ )H∗ , Kε̂ 	= σ̂. (27)

Remark 1. Continuous models with an additional conservation law are referred to as “entropy”
models (S.K. Godunov). Discrete models (difference schemes) with this property are said to be
“completely conservative” (Popov–Samarskii [1; 2, Chap. III, Secs. 5, 6]). We mainly pay attention
to the construction of completely conservative discrete models and efficient algorithms of their
implementation for problem (25). For problem (19), these issues are presented in [3] in sufficient
detail. Part of the results in [3] is given here without additional references and explanations.

The passage from continuous to discrete models is carried out in accordance with [4]. Notation
that is standard in the theory of difference schemes will be used without explanation. Thus,

G → Gh = [0, τ, . . . , nτ, . . . , kτ = t1] × Vh, Mh ∈ Vh, wn
h = w(Mh, nτ),

γ → γh = γ1h ∪ γ2h, u|γ1 = 0 → un
h|γ1h

= 0, σijnj|γ2 = 0 → (σn
ij)hnj|γ2h

= 0,

τ(·)n+1
t̄ = (·)n+1

h − (·)n
h, ∂+

j (·)h = (·)xj
, ∂−

j (·)h = (·)x̄j
, (·)α = α(·)n+1

h + (1 − α)(·)n
h .

The grid Mh ∈ Vh with respect to the space variables xj is assumed to be uniform and coordinated
with γh. The adjoint-coordinated approximation condition [5]

(Ru, σ)H∗ = (u,R∗σ)H → (Rhuh, σh)H∗
h

= (uh, R∗
hσh)Hh

(28)

is a key condition in this passage. Condition (28) permits completely preserving the structure of
the continuous models (19) and (25) on the discrete level and possibly inheriting some of their
other properties.

To the continuous model (19), we assign the two-parameter (0 ≤ α, β ≤ 1) family of adjoint-
coordinated two-layer difference schemes

�hvn+1
t̄ + R∗

hσα = �hfh, εn+1
t̄ − Rhvβ = 0, un+1

t̄ = vβ, σh = Khεh,

u0
h = ϕ1h, v0

h = ϕ2h, ε0
h = Rhϕ1h.

(29)

By virtue of condition (28), for particular values of α and β, the difference scheme (29) is defined
to within the choice of the approximation Rh to the operator R or R∗

h to the operator R∗. In turn,
this necessitates coordinating the approximations to the operator ∂j in (6) and (8). For example, if
the approximation ∂−

j is chosen for ∂j in (6), then one should take ∂+
j for the approximation to ∂j

in (8). One can treat �h, Kh, fh, ϕ1h, and ϕ2h in (29) as the projection of a given object onto V .
Part of the indices can sometimes be omitted to simplify the notation. Next, let

In
h = 0.5(�hvn

h , vn
h)Hh

+ 0.5(εn
h , σn

h)H∗
h
. (30)
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Theorem 3. If α = β = 0.5, then the difference scheme (29) has the same conservation law as
the continuous model (19),

In+1
h = In

h + τ(�hfh, v0.5)Hh
; (31)

i.e., the scheme (29) is completely conservative.

In a similar way, to the continuous viscoelastic model (25), we assign the family of adjoint-
coordinated discrete models

�hv̂ n+1
t̄ + R∗

hσ̂α = �hfh, ε̂ n+1
t̄ = Rhv̂β, û n+1

t̄ = v̂β, σ̂h = Khε̂h + ηhRhv̂β,

û 0
h = ϕ1h, v̂ 0

h = ϕ2h, ε̂ 0
h = Rhϕ1h.

(32)

Now let
Î n

h = 0.5(�hv̂ n
h , v̂ n

h )Hh
+ 0.5(ε̂ n

h ,Khε̂ n
h )H∗

h
. (33)

Theorem 4. If α = β = 0.5, then the difference scheme (32) has the same conservation law as
the continuous model (25),

Î n+1
h + τ(v̂0.5, R

∗
hηhRhv̂0.5)Hh

= Î n
h + τ(�hfh, v̂0.5)Hh

; (34)

i.e., the scheme (32) is completely conservative.

The presence of conservation laws (31) and (34) permits one to study the convergence of the
difference schemes (29) and (32) readily. Relations (31) and (34) obviously imply uniform stability
with respect to the initial data in the energy norms generated by the functionals (30) and (31).
Stability with respect to the right-hand side can be obtained in a standard way with the use of the
ε-inequality [6, Chap. II, Sec. 2]. However, the derivation of convergence theorems for the difference
schemes (29) and (32) is only easy for α = β = 0.5. A violation of this condition results in some
difficulties, part of which are illustrated below for the difference scheme (29). When doing so, it is
harmless to set fh = 0 in (29) as well as in forthcoming considerations.

Lemma 4. The difference scheme (19) has the additional “conservation law”

In+1
h + τ 2Q(α, β) = In

h , Q(α, β) = −0.5[(1 − 2β)Q(σα) + (1 − 2α)Q(vβ)],
Q(σα) = (Rh�−1R∗

hσα, σα)H∗
h
, Q(vβ) = (R∗

hKRhvβ, vβ)Hh
.

(35)

For the difference scheme (19), the term τ 2Q(α, β) in (35) characterizes the total energy imbal-
ance under the passage In

h → In+1
h . It would be more meaningful to have an imbalance characteristic

for the total computation time t1 = kτ under the passage I0
h → Ik

h . To obtain the corresponding
estimates, we use the following assertion proved in [7].

Lemma 5. The nonzero eigenvalues νm and δm of the spectral problems

Rh�−1R∗
hηm = νmK−1ηm, ηm ∈ H, R∗

hKRhrm = δm�rm, rm ∈ Hh, (36)

coincide, and one has the inequalities

νmin(εα, σα)H∗
h
≤ Q(σα) ≤ νmax(εα, σα)H∗

h
,

νmin(�vβ, vβ)Hh
≤ Q(vβ) ≤ νmax(�vβ, vβ)Hh

.
(37)

As a rule, the occurrence of the term τ 2Q(α, β) in the “conservation law” (35) is attributed to
the “approximation viscosity” of the difference scheme (19), where no physical meaning is usually
ascribed to the word “viscosity.” But then one ask what the physical process is to which the discrete
model (19) with the “conservation law” (35) corresponds. For α = β = 0.5, the answer is given
by Theorem 3.
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Remark 2. The physical processes described by the continuous models (19) and (25) are
essentially different. We deal with an equilibrium (invertible) process in the first case and a non-
invertible process in the second case. The entropy S(t) related to a given volume V characterizes
the noninvertibility of the process. For the viscoelastic model (25), we have [8, Part 1, Sec. 16]

�T
dS

dt
= Φ, Φ = (R∗ηRv, v)H , (∗)

where T is temperature and Φ is a dissipative function characterizing the change in the mechanical
energy I(t) under the transition t → t + Δt.

Next, note that, by virtue of (35), the properties of the discrete elastic model (29) substantially
depend on the sign of Q(α, β). Namely, if S is the entropy, then

Q(α, β) > 0 → In+1
h < In

h → Sn+1 > Sn, (381)
Q(α = β = 0.5) = 0 → In+1

h = In
h → Sn+1 = Sn, (382)

Q(α, β) < 0 → In+1
h > In

h → Sn+1 < Sn. (383)

Apparently, the use of the discrete model in (383) is hardly expedient for a numerical experiment,
at the very least, because dS = 0 for the original continuous discrete model (19). Nevertheless,
we illustrate some properties of the discrete model (383) using explicit difference scheme (29),
α = β = 0, as an example. In the explicit difference scheme, In+1

h increases infinitely, and this
growth should be restricted to obtain an estimate for the stability of the difference scheme with
respect to the initial data. We have

Ik
h = Ik−1

h + 0.5τ 2[Q(σk−1) + Q(vk−1)] ≥ (1 + τ 2νmax)Ik−1
h ;

consequently,
Ik

h ≤ (1 + τ 2νmax)kI0
h. (39)

There is a well-known estimate for νmax, νmax ≤ c2/h2, where the domain constant c2 is independent
of h. Let us specify the passage to the limit as follows: τ 2/h2 = δ2 = const as τ → 0 and h → 0.
In addition to (39), we obtain the following stability estimate with respect to the initial data:

Ik
h ≤ MI0

h, M = exp(a2t1), a2 = c2δ2. (40)

Along with (39), we have a similar upper bound for the mechanical energy imbalance after the
termination of computations: t1 = kτ , and so

(1 + τδ2h2νmax)−k ≤ I0
h/Ik

h ≤ (1 + τδ2h2νmin)−k. (41)

From the formal viewpoint, the estimate (41) permits one to use τ and δ2 to “control the mechanical
energy imbalance” for the discrete model (383) with α = β = 0. However, here one should take
into account the fact that, when using inequalities (37), the equality in the upper and lower bounds
is attained at distinct elements of the spectral problems (36). In addition, since Sn+1

t
< 0, we

see that the model (383) with α = 0 and β = 0 itself can only be treated as a hypothetical one
and only as an abstract approximation to the discrete model (382). Therefore, the computation
of I0

h and Ik
h is absolutely necessary when analyzing real problems with the use of the model (383)

with α = β = 0.
The same functionals should be computed when using the discrete model (381) with α = β = 1

(an implicit difference scheme) for the computations. Here Sn+1
t

> 0 and

In+1
h ≤ In

h ≤ · · · ≤ I0
h, (42)

which implies that one has uniform stability with respect to the initial data and sufficient conditions
for the convergence are satisfied. However, one immediately needs to find out whether In

h in (42)
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is bounded below. In this connection, consider the discrete elastic model (381) with α = 1 and
β = 0.5. For this model, we have

In+1
h + τ 2(R∗

hKhRhv̂0.5, v̂0.5)Hh
= In

h . (43)

At the same time, for the discrete viscoelastic model (32) with α = β = 0.5, we have [see (34)]

Î n+1
h + τ 2(R∗

hηhRhv̂0.5, v̂0.5)Hh
= Î n

h . (44)

The conservation laws (43) and (44) coincide to within notation if we set ηh = Khτ 2 in the latter.
This coincidence is neither formal nor random. Indeed, on the one hand, the vector ŵ(M, t) =
(v̂, û, ε̂, σ̂)T in the viscoelastic model (25) satisfies the relation [9]

ŵ(M, t) → w(M) = (0, Lu = �f, ε = Ru, σ = Kε)T, L = R∗KR, (45)

as t → ∞, where L is the Lamé operator, which implies exit to a stationary mode. On the other
hand, if the asymptotic stability condition [6, Chap. III, Secs. 2, 3] is satisfied, then the exit to
a stationary mode occurs for the discrete elastic model (381) with α = 1 and β = 0.5 as well.
Namely, if k → ∞, then

wk
h(M,nτ) → wh(Mh) = (0, Lhuh = �hfh, εh = Rhuh, σh = Khεh). (46)

The comparison of relations (45) with (46) shows that there exist asymptotically stable discrete
elastic models (381) for which there onsets a “regular” stationary mode as τ → 0, h → 0, and t → ∞;
which mode corresponds to the static linear elasticity problem

R∗KRu ≡ Lu = �f, ε = Ru, σ = Kε, u|γ1 = 0, σijnj|γ2 = 0. (47)

For us, what was said above is more than enough reason to choose the discrete viscoelastic
model (32) with α = β = 0.5 as a basis for the construction of efficient algorithms under the passage
n → n + 1. First, we rewrite the scheme (32) with α = β = 0.5 in the canonical form (f = 0)

Byn+1
t̄ + Âyn = 0, B = 0.5τÂ, Â =

(
A11 A12

A21 0

)
, yn = w(Mh, nτ) = (vn

h , εn
h)T,

A11 = �−1R∗
hηRh = �−1Lh(η), A12 = �−1RhKh, A21 = −Rh.

(48)

The canonical form (48) takes into account the decomposition

σ̂ = σ + σ′ = Kε + η
∂ε

∂t
= Kε + ηRv

of the tensor σ̂ in (32) into the sum of the elastic stress tensor σ and the viscous stress tensor σ′.
The initial data and the boundary conditions in (48) are the same as in (32).

The passage n → n + 1 in (48) requires the inversion of the operator B = (E + 0.5τÂ ).
The class of economical implementations (algorithms) considered below uses special additive de-
compositions of the operator Â and the construction of the corresponding factorization of the
operator B̂,

Â =
m∑

i=1

Â (i) → B̂ =
m∏

i=1

B̂ (i) =
m∏

i=1

(E + 0.5τÂ (i)).

Then, instead of the discrete model (48), one uses the discrete model

B(1) · · ·B(m)yn+1
t̄ + Âyn = 0, (49)

and, say, for m = 2, the passage n → n + 1 in (49) can be carried out in a standard way,

B(1)y∗ + Âyn = 0, B(2)yn+1
t̄ = y∗. (50)
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Remark 3. The idea itself of the passage from the operator B in (48) to the factorized
operator B̂ in (49) is usually treated as an “approximate factorization method.” An algorith-
mic implementation of this idea, depending on the specific problem, is treated as either the
“method of decomposition in the space variables,” or a “locally one-dimensional method,” or,
finally, the “method of decomposition into physical processes” [10, Chap. VI, Sec. 30]. As to the
last method, �A11 = Lh(η) → 0 in (48) as η → 0, and it is most natural to use the additive
decomposition of the operator Â into “physical processes,”

Â =

(
0 A12

A21 0

)
+

(
A11 0

0 0

)
= Â (1) + Â (2). (51)

Then the discrete model for finding y∗ in (50) coincides, to within notation, with the discrete
elastic model (29) with α = β = 0.5, which has the conservation law (31). Therefore, by (51),
the problem of constructing economical implementations (algorithms) for the discrete viscoelastic
model (32) with α = β = 0.5 is directly related to the problem of constructing an economical
algorithm for the discrete elastic model (29) with α = β = 0.5. The latter problem was studied
rather comprehensively in [3].

Let us present a result in [3] to be used in what follows. In the canonical representation of the
discrete operator model (29) with α = β = 0.5, y = wh,

(E+0.5τA)yn+1
t̄ +Ayn = 0, A =

(
0 A12

A21 0

)
=

(
0 A12

0 0

)
+

(
0 0

A21 0

)
= A(1)+A(2), (52)

we replace the operator B = (E + 0.5τA) by the factorized operator

B̃ = B1B2 =

(
E 0.5τA12

0 E

)(
E 0

0.5τA21 E

)
, B̃ = B + O(τ 2).

This corresponds to the additive expansion of the operator A indicated in (52) with the subsequent
approximate factorization (49) and the standard implementation (50). The standard implementa-
tion leads to the problem

v∗ + 0.5τA12ε
∗ + A12ε

n = 0, ε∗ + A21v
n = 0, (501)

for the passage yn → y∗ and to the problem

vn+1
t̄ = v∗, 0.5τA21v

n+1
t̄ + εn+1

t̄ = ε∗ (502)

for the passage y∗ → yn+1. Obviously, it follows from (501) and (502) that the discrete factorized
model (49)

(E + 0.5τA(1))(E + 0.5τA(2))yn+1
t̄ + Ayn = 0 (53)

used in the passage yn → yn+1 in the standard implementation (50) ↔ (501), (502) permits one to
express yn+1 via yn alone in closed form. This is also true for the factorized model

(E + 0.5τA(2))(E + 0.5τA(1))yn+1
t̄ + Ayn = 0. (54)

Such discrete models can naturally be refereed to as solvable in closed form. Obviously, the paral-
lelization degree for models solvable in closed form is the same as for ordinary difference schemes,
where B = E in the canonical representation (48). We especially note the drastic difference of
the passage yn → yn+1 from the corresponding passages in (53) and (54). The operator B1 is
lower triangular, and the operator B2 is upper triangular; therefore, in this case, the factorization
method implements approximate factorized representations of the unknown operator B in the form
B = B1B2 + O(τ 2) for the model (53) and B = B2B1 + O(τ 2) for the model (54). Let (B) be the
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matrix of the operator B in a Cartesian basis. Then the analogy with similar (exact) represen-
tations (B) = (B1)(B2) or (B) = (B2)(B1) in the classical Gauss elimination method is obvious.
Note also that the models (53) and (54) solvable in closed form have conservation laws different
from (31). However, in this case, one can estimate the mechanical energy imbalance, which, say,
for (53), can be represented as follows [3] :

1 − I0
h/Ik

h ≤ 0.25ω2 = ε1. (55)

Here ω = N1τ/h is the “Courant number,” and ε1 is the prescribed value of the “imbalance” after
the termination of computations at t1 = kτ . The domain constant N1 is independent of τ and h.
Therefore, one can consider the model (53) as a discrete model with controlled mechanical energy
imbalance solvable in closed form.

In accordance with the preceding, we seek efficient implementations of the viscoelastic discrete
model (48) in the class of explicitly solvable models, which admit “high”-degree parallelization. As
a starting point, we use the additive decomposition

Â =

(
A11 A12

A21 0

)
=

(
A1 A12

0 0

)
+

(
A2 0

A21 0

)
= Â (1) + Â (2), A11 = A1 + A2. (56)

Next, from (48) and (56), we pass to the factorized model

(E + 0.5τÂ (1))(E + 0.5τÂ (2))ŷ n+1
t̄ + Âŷ n = 0 (57)

for which we use the standard implementation (50) : ŷ n → ŷ ∗ → ŷ n+1
t̄ and obtain

(E + 0.5τÂ (1))ŷ ∗ + Âŷ n = 0, (E + 0.5τÂ (2))ŷ n+1
t̄ = ŷ ∗, (58)

or, which is equivalent,
(

(E + 0.5τA1) 0.5τA2

0 E

)(
v̂ ∗

ε̂ ∗

)
+

(
A11 A12

A21 0

)(
v̂ n

ε̂ n

)
= 0, (581)

(
(E + 0.5τA2) 0

0.5τA21 E

)(
v̂ n+1

t̄

ε̂ n+1
t̄

)
=

(
v̂ ∗

ε̂ ∗

)
. (582)

From the formal viewpoint, the method (581), (582), as well as the method (501), (502), can
be treated as an operator alternating-triangular method implementing the corresponding discrete
models (32) and (29) with α = β = 0.5. Moreover, in (581), (582), as well as in (501), (502),
one can use the following order of determining the components of the covector ŷ : v̂ ∗ → ε̂ ∗ and
v̂ n+1

t̄ → ε̂ n+1
t̄ . However, unlike (501), (502), the structure of the operators

(E + 0.5τAm) : Hh → Hh, m = 1, 2,

is undefined in (581), (582). It is only known that A1 + A2 = A11 : Hh → Hh. Therefore,
an economical algorithm for the inversion of the operators (E+0.5τAm) in (581), (582) is impossible
in the general case.

Lemma 6 [11, 12]. The Lamé grid operator Lh(η) = R∗ηRh = Λh admits the decomposition

Λh = Λ(1)
h + Λ(2)

h , (Λ(1)
h )∗ = Λ(2)

h . (59)

As was already mentioned, for the adjoint-coordinated approximations (28), the operator Rh

(or R∗
h) is defined to within a specific approximation to the operator ∂j in (8). To be definite,
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we assume that ∂+
j � ∂j for Rh; then for R∗

h one should set ∂−
j � ∂j . This permits one to represent

Λh in (59) as follows:

Λh =

⎛
⎜⎝

Λ11 Λ∗
21 Λ∗

31

Λ21 Λ22 Λ∗
32

Λ31 Λ32 Λ33

⎞
⎟⎠ = Λ∗

h > 0,

where

Λ11 = −(η1(·)x1)x̄1 − (η2(·)x2)x̄2 − (η2(·)x3)x̄3 ,

Λ22 = −(η2(·)x1)x̄1 − (η1(·)x2)x̄2 − (η2(·)x3)x̄3 ,

Λ33 = −(η2(·)x1)x̄1 − (η2(·)x2)x̄2 − (η1(·)x3)x̄3 , −Λij = −(η2(·)xi
)x̄j

, i > j.

(60)

Then it follows from definitions (60) that

Λii = Λ(1)
ii + Λ(2)

ii , (Λ(1)
ii )∗ = (Λ(2)

ii ). (61)

This permits one to set A1 = Λ(1)
h in (581) and A2 = Λ(2)

h in (582). We have thereby formally
constructed an “economical” passage ŷ n → ŷ n+1 : (581) → (582).

Remark 4. As was several times mentioned above, the passage B → B1, . . . , Bm in the canonical
representation of the considered viscoelastic model

Bŷ n+1
t̄ + Âŷ n = 0, Â =

(
Λh A12

A21 0

)
,

is always associated with a particular additive decomposition of the operator Â. We have
m = 2 in the model (58); however, the order of determination of components of the covector
ŷ is fixed in (581), (582); namely,

ŷ n =

(
v̂ n

ε̂ n

)
→

(
v̂ ∗

ε̂ n

)
→

(
v̂ ∗

ε̂ ∗

)
→

(
v̂ n+1

ε̂ ∗

)
→

(
v̂ n+1

ε̂ n+1

)
= ŷ n+1. (62)

At each stage of the passage ŷ n → ŷ n+1 in (62), the notions “efficiency” and “parallelization
degree” have different meanings. Let us clarify this assertion. Let

Â =

(
0 A12

A21 0

)
+

(
Λh 0

0 0

)
= Â (1) + Â (2).

This decomposition corresponds to the factorized viscoelastic model

(E + 0.5τÂ (1))(E + 0.5τÂ (2))ŷ n+1
t̄ + Âŷ n = 0,

but

Â (1) =

(
0 A12

0 0

)
+

(
0 0

A21 0

)
= Â (1)

1 + Â (1)
2 ,

Â (2) =

(
Λ(1)

h 0

0 0

)
+

(
Λ(2)

h 0

0 0

)
= Â

(2)
1 + Â

(2)
1 , (Λ(1)

h )∗ = Λ(2)
h .

Then the passage ŷ n → ŷ n+1 in the standard implementation (50) is carried out as follows
([cf. (62)] :

ŷ n =

(
v̂ n

ε̂ n

)
→

(
v∗

ε∗

)
→

(
vn+1

εn+1

)
→

(
v̂ ∗

εn+1

)
→

(
v̂ n+1

εn+1

)
→

(
v̂ n+1

ε̂ n+1

)
= ŷ n+1. (63)
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Under the passage ŷ n → yn+1 in (63), we deal with a model solvable in closed form. The number
of arithmetic operations for the computation of components of the covector y∗ or yn+1 in (63) at
a node (Mh, (n + 1)τ) is independent of the total number of nodes (efficiency). The parallelism
degree is the same as in the ordinary explicit scheme. The situation is different under the passage
yn+1 → ŷ n+1. Only the component v of the covector y = (v, ε)T changes under this passage, and
the passage itself consists of two stages, (i) vn+1 → v̂ ∗ and (ii) v̂ ∗ → v̂ n+1. For each of these stages,
there exist numberings of nodes of the grid Mm

h , that specify the order of finding v̂ ∗
h or v̂ n+1

h :

(M1
h)∗ → (M2

h)∗ → · · · → (Mm1
h )∗; (M1

h)n+1 → (M2
h)n+1 → · · · → (Mm1

h )n+1

for which the discrete models at these stages become solvable in closed form. In this connection,
we have the problem of constructing a numbering strategy for which the paralellization degree is
maximal. Obviously, the solution of this problem depends on the computer configuration used in
the computations.

In conclusion, note that, for the above-considered implementations of the discrete viscoelastic
model (32) with α = β = 0.5, the basic constants in (37) and [12] permit one to obtain an estimate
similar to (55).
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